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Exposure to coal mine dust and/or crystalline silica results in pneumoconiosis with initiation and
progression of pulmonary fibrosis. This review presents characteristics of simple and complicated
coal workers' pneumoconiosis (CWP) as well as pathologic indices of acute and chronic silicosis by
summarizing results of in vitro, animal, and human investigations. These results support four basic
mechanisms in the etiology of CWP and silicosis: a) direct cytotoxicity of coal dust or silica, resulting
in lung cell damage, release of lipases and proteases, and eventual lung scarring; b) activation of
oxidant production by pulmonary phagocytes, which overwhelms the antioxidant defenses and
leads to lipid peroxidation, protein nitrosation, cell injury, and lung scarring; c) activation of mediator
release from alveolar macrophages and epithelial cells, which leads to recruitment of
polymorphonuclear leukocytes and macrophages, resulting in the production of proinflammatory
cytokines and reactive species and in further lung injury and scarring; o) secretion of growth factors
from alveolar macrophages and epithelial cells, stimulating fibroblast proliferation and eventual
scarring. Results of in vitro and animal studies provide a basis for proposing these mechanisms for
the initiation and progression of pneumoconiosis. Data obtained from exposed workers lend
support to these mechanisms. Key words: black lung disease, coal mine dust, crystalline silica,
cytokines, lung disease, occupational diseases, occupational exposures, pulmonary fibrosis, reactive
oxygen species. - Environ Health Perspect 1 08(suppl 4):675-684 (2000).
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Silicosis and coal workers' pneumoconiosis
(CWP) have long been recognized as signifi-
cant occupational lung diseases. Silicosis and
CWP continue to occur in several industrial
workplaces even though these diseases are pre-
ventable by environmental dust control.
Although significant insights have been gained
into mechanisms involved in the initiation
and progression of silicosis and CWP, it is dif-
ficult to conclude that these accomplishments
have totally solved the problem of these occu-
pational diseases. The knowledge acquired
through research has been most valuable in
determining the cause and pathogenesis of
these occupational lung diseases. In industrial-
ized countries, exposure-response information
and the relationship among pathologic, radio-
logic, and physiologic abnormalities of these
diseases have led to the recommendation and
implementation of exposure limits. However,
additional innovative research strategies are
vital to identify susceptible individuals, diag-
nose these pneumoconioses in the early stages
of development, and develop treatment strate-
gies. In addition, research is needed to identify
biologic mechanisms involved in unique occu-
pational settings, for example, sandblasting,
rock drilling, or exposure to mixed dusts,
where risk of disease is unusually high.

The literature concerning symptoms, clin-
ical manifestations, and mechanisms for initi-
ation and progression of silica-induced lung
diseases and CWP is extensive. By intent, this
review is meant to be brief and somewhat
selective. Readers are directed to other sources
if more detailed information is desired

(1-12). This review is an overview of expo-
sures, toxicologic and pathologic responses,
and possible mechanisms involved in silicosis
and CWP.

Silica Exposures
Silicosis is caused by inhalation of crystalline
silica, mostly in occupational settings. It
is most common among workers in underde-
veloped countries. However, silicosis occurs
frequently even in developed countries, par-
ticularly in certain occupations such as
mining, sandblasting, surface drilling, stone
cutting, construction, pottery making, silica
flour mill operations, and other occupations
in which silica dust exposures occur (1-3). In
addition, environmental exposure to crys-
talline silica is common because of its abun-
dance in soil. Silica can become airborne in
arid, windy conditions or during agricultural,
urban, and construction activities. Indeed,
lung fibrosis and pulmonary changes associ-
ated with environmental silica and mixed
dust exposures have been observed in the
lungs of farm animals and humans (13).

In 1983 the National Institute for
Occupational Safety and Health (NIOSH)
estimated that approximately 2.3 million
workers at 238,000 work sites may be
exposed to silica dust (14). NIOSH estimates
that as many as 59,000 workers may be at
risk of developing some degree of silicosis,
with 250 deaths/year being attributed to silica
exposure (15). Approximately 1,500 cases of
silicosis are diagnosed annually in the United
States (16). NIOSH also reported that

between 1968 and 1990 there were 13,744
deaths with mention of silicosis in the United
States (16). However, in recent years, the
annual number of deaths has decreased from
1,157 in 1968 to 301 in 1988 (16).

Currently, several standards exist for the
limitation of airborne levels of respirable crys-
talline silica. The Occupational Safety and
Health Administration permissible exposure
limit (PEL) is 100 pg/m3 for an 8-hr work
exposure. The NIOSH recommended expo-
sure limit (REL) is 50 pg/m3 for up to 10
hr/day for a 40-hr work week. The American
Conference of Governmental Industrial
Hygienists threshold limit value is 100
pg/m3. In occupations such as rock drilling
and sandblasting, measured respirable crys-
talline silica levels often far exceed such stan-
dards. It is likely that the majority of overt
exposures occur in small, unregulated indus-
trial settings or in high-hazard occupations
such as sandblasting, drilling, tunneling, silica
flour mill operations, and stone grinding.
Little exposure-response information is avail-
able concerning mixed exposures such as sil-
ica and metal dust generated during abrasive
blasting operations. Therefore, it is uncertain
if such occupational exposures require unique
exposure limits.

Physical and Chemical
Properties of Silica
Silicons make up almost 28% of the earth's
crust and are found in combination with
many other minerals and metals. Silica can
exist in either a crystalline or amorphous
form. The crystalline types of silica (SiO2)
include five polymorphs, i.e., quartz,
tridymite, cristobalite, coesite, and stishovite
(2,8). All these polymorphs are fibrogenic and
biologically toxic. In most occupational expo-
sures, quartz is the major type of silica
involved. Amorphous silica and silicates are
relatively less fibrogenic than crystalline silica
(8). In the case of a-quartz, as well as the
other crystalline polymorphs with the excep-
tion of stishovite, the silicon dioxide (SiO2)
molecules are arranged as a tetrahedral crystal
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(8). In the presence of water, the surface of
silica becomes hydrated to form silanol
groups (-SiOH). It is believed that the high
reactivity of crystalline silica to biologic mem-
branes is due to the unique properties of these
surface silanol groups. The first theory is that
-SiOH groups are hydrogen donors, whereas
most biologic macromolecules contain lone-
pair electrons on oxygen or nitrogen that
serve as hydrogen acceptors. The formation
of hydrogen bonds would result in strong
interaction between silica and biologic mem-
branes, resulting in possible damage. A sec-
ond theory is that the surface of silica is
negatively charged. At pH 7.0, 1 in 30
-SiOH groups would be negatively charged
(-SiO-). Negatively charged silica particles
would react strongly with scavenger receptors
on alveolar macrophages and would activate
the generation of reactive oxygen species
(ROS) and inflammatory cytokines (9,10). A
third theory is that deavage of the silica crys-
tal, as would occur in silica flour milling, rock
drilling, and sandblasting, results in the gen-
eration of Si and SiO' radicals on the frac-
ture planes, which can induce oxidant
damage (9,17,18). Stishovite is another poly-
morph of pure crystalline silica that is distin-
guished by its octahedral structure. Structural
differences among these polymorphs are con-
sidered to be important in their biologic reac-
tivity, i.e., > quartz > tridymite > cristobalite
> coesite > stishovite.

Human Pathologic Reactions
to Crystalline Silica Exposure
Exposure to crystalline silica can result in
adverse pulmonary responses such as acute sili-
cosis, accelerated siicosis, chronic siicosis, and
conglomerate silicosis (1). In addition, silica
exposure may also be associated with systemic
and autoimmune diseases such as sderoderma,
rheumatoid arthritis, systemic lupus erythe-
matosis, nephropathy, and proliferative
glomerulonephritis (1,12). Tuberculosis is a
common complication of silicosis often seen in
severe grades of the disease. A possible associa-
tion between siicosis and lung cancer is being
accepted on the basis of evidence for a role of
silica exposure in increased lung tumor forma-
tion in experimental animals and exposed
human populations (19).
Acute Silicosis
Acute silicosis (silicolipoproteinosis) results
from exposure to relatively high levels of silica
(3,20). It has been reported in occupations
such as sandblasting, surface drilling, tunnel-
ing, silica flour milling, and ceramic making.
Morphologically the disease is characterized
by pulmonary edema, interstitial inflamma-
tion, and the accumulation within the alveoli
of proteinaceous fluid rich in surfactant
(1, 12). The exudate in the alveoli is

eosinophilic, with a fine granular appearance
(Figure 1). Radiographically, chest X rays
exhibit a ground-glass appearance with dif-
fuse lesions in the middle and lower lobes.
Patients often suffer from labored breathing,
fatigue, cough, weight loss, decreased pul-
monary function, and compromised gas
exchange. They develop cyanosis and respira-
tory failure, often complicated by mycobacte-
rial infections. It has been proposed that
acute silicosis occurs in workers exposed to
freshly fractured silica dust and that surface
Si' and SiO' radicals generated during frac-
turing play an important role in the rapid
onset of this disease (17,18).

Accelerated Silicosis
Accelerated silicosis is commonly associated
with heavy exposure as might occur in silica
flour mill operations, sandblasting, and other
crushing operations (12,20). It is similar in
many respects to acute silicosis, exhibiting an
exudative alveolar lipoproteinosis associated
with chronic inflammation. In addition,
accelerated silicosis is associated with fibrotic
granulomas containing collagen, reticulin,
and a large number of silica particles. The
granulomas consist of a large number of
mononuclear cells, fibroblasts, and collagen
fibers with a predisposition for circular orien-
tation showing the characteristic of immature
silicotic nodules (12). The alveolar septa are
lined with hypertrophic and hyperplastic
alveolar type II epithelial cells with increased
numbers of lamellar bodies. As with acute sil-
icosis, accelerated silicosis also is associated
with an increased morbidity and mortality.

Figure 1. Acute silicosis showing granular eosinophilic
exudate in alveolar spaces and interstitial inflammatory
infiltration.

Chronic Silicosis
Inhalation of crystalline silica over prolonged
periods promotes the formation of the classic
fibrotic nodules having a typical histologic
appearance of concentric arrangements of col-
lagen fibers with central hyalinized zones
(Figure 2). Typical concentric silicotic lesions
with the whorled fibers of collagen are charac-
teristic of silicotic lesions produced in humans
by inhalation of crystalline silica and are mor-
phologically distinct from lesions produced by
other inorganic occupational exposures (1,12).
The nodules show variable degrees of calcifica-
tion and necrosis. Dust-containing macro-
phages, fibroblasts, and lymphocytes are often
restricted to the periphery of the nodules.
Microscopically, lesions of silicosis, which are
sharply demarcated from the adjoining lung
parenchyma, usually range in size from few
millimeters to several centimeters in diameter.
Nodules are often found predominantly in the
upper zones of the lungs and in subpleural
areas. In pure silicosis, nodules are free of pig-
mentation, and polarizing microscopy reveals
dull birefringent partides, primarily in the cen-
ter of the nodules. Radiographically, rounded
opacities are evident initially in the upper lobes
of the lung. As chronic siicosis progresses, pul-
monary function deficits evidenced by
decreases in static lung volumes and gas
exchange become obvious.

Conglomerate Silicosis
Conglomerate silicosis results from the coales-
cence and agglomeration of several smaller

Figure 2. Chronic silicotic nodule showing characteristic
features of this lesion. The amorphous center is sur-

rounded by concentrically organized hyalinized collagen
fibers. A cellular mantle of inflammatory cells is present
at periphery. Mason's trichrome staining.
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nodules. In addition to the enlargement of
nodules, profusion of nodular lesions increases
and results in progressive massive fibrosis
(PMF). Cavitation and extensive destruction
of the lung parenchyma, including bronchi-
oles and blood vessels, are common with
PMF. According to the Silicosis and Silicate
Disease Committee, a PMF lesion is defined
as a lesion greater than 2 cm in diameter in
contrast to the 1-cm or larger radiographic
size established by the International Labour
Office (ILO) (1).

Silicosis and Tuberculosis
In the beginning of this century, tuberculosis
reached epidemic proportions in workers
with silicosis. The advent of drug therapy and
dust control measures has considerably
reduced the prevalence of silicotuberculosis.
However, an increased risk for tuberculosis
has recently been reported in Danish foundry
workers with advanced silicosis (21). In addi-
tion, tuberculosis is still in great excess in
South African gold miners and slate workers
in Wales (22-24). The depressant effect of
crystalline silica on the ability of alveolar
macrophages to kill the tuberculosis
mycobacterium was confirmed in experimen-
tal studies (25). It is believed that silicosis
leads to a reduction in cell-mediated immu-
nity with alterations in lymphocyte subsets
and serum immunoglobulin levels (26).
Microscopically, the silicotic nodules, con-
comitant with tuberculosis alterations, will
have laminations and epithelioid cells with a
lymphocyte collar. A caseation in the center
of the silicotic nodule is common.

Rheumatoid Complications
Rheumatoid pneumoconiosis is rare in silico-
sis. It is characterized by rapidly developing
large opacities in a size range of 1-5 cm
located mostly in the periphery of the lungs,
often with only mild silicosis. Rheumatoid
silicotic complications are often seen in
patients with rheumatoid disease or in
patients with a rheumatoid positive factor.
Macroscopically, the lesions appear to have
dark and light laminating bands with central
necrosis. Microscopically, a central zone of
fibrinoid necrosis with silica is surrounded by
palisading histiocytes, neutrophils, lympho-
cytes, and fibroblasts. Small blood vessels in
the peripheral zones show clusters of lympho-
cytes and plasma cells.

Vascular Diseases
Chronic hypoxia is a common cause of death
in severe acute silicosis. Chronic hypoxia can
bring about pulmonary vascular spasms as a
result of the pulmonary disease caused by
severe involvement of lung parenchyma.
Morphologic alteration of the vasculature is
common as a result of dust accumulation and

fibrosis in PMF. In such cases of severe con-
glomerate silicosis or PMF, pulmonary hyper-
tension and cor pulmonale are common
features and may become a cause of death.

Glomerulonepliritis
Mild-to-moderate abnormalities in both renal
function and structure have been observed in
workers exposed to crystalline silica.
Numerous case reports of severe glomerulo-
nephritis with renal failure occurring in per-
sons with acute silicosis have been described as
"silicon nephropathy" (27,28). Immunologic
abnormalities are often reported as common
in these cases and a potential exists for
immune-mediated renal injury. Direct injury
to cells by the microcrystalline silica particles
is suspected as a possible cause based on the
demonstration of increased numbers of silica
particles in kidneys of silicotic patients. The
association of silica exposure with focal
glomerular disease in several case reports is
difficult to ignore.

Bronchogenic Carcinoma
Since the first proposed hypothesis by
Goldsmith et al. in 1982 indicating a proba-
ble link between exposure to silica and lung
cancer, several epidemiologic and pathologic
studies have either supported or dismissed
such a notion (19,29,30). In 1987, an
International Agency for Research on Cancer
(IARC) working group reviewed all the avail-
able evidence and concluded that there was
insufficient evidence for the carcinogenicity
of crystalline silica in humans (30). These
conclusions about carcinogenicity of silica in
humans were influenced by five major short-
comings: inappropriate controls, other occu-
pational carcinogens, misclassification of
silicotics, detection bias for silicosis, and
chance of sampling variability (19,30).
However, a recent working group organized
by IARC in 1997 concluded that there is
now sufficient evidence for the carcinogenic-
ity of silica in humans (31-33). Several
studies among the many reviewed by the
[ARC working group on the question of sil-
ica exposure and cancer risk in humans were
negative or equivocal, and carcinogenicity of
silica was not detected in all industrial opera-
tions. However, nine studies showed exces-
sive risk for lung cancer (19,32). These
included refractory brick workers, pottery
workers, diatomaceous earth workers,
foundry workers, granite workers, and mine
workers (19,32). It appears that the carcino-
genic property of crystalline silica may be
dependent on its biologic activity, polymor-
phic nature, or specific industrial processes
such as heat treatment and mechanical grind-
ing. The relationship between the ability of
silica to generate ROS and carcinogenesis has
recently been reviewed (34).

Coal Mine Dust Exposures

Coal is a fossil fuel mined throughout the
world. The generation of coal mine dust dur-
ing underground coal mining is the most sig-
nificant source of coal dust exposure. There
are two basic types of coal mining operations,
surface mining and underground mining, pro-

ducing distinctively different exposure vari-
ables and disease entities. Underground coal
miners are at greater risk of developing CWP
than strip or surface miners because of the
higher dust levels in the underground envi-
ronment. In strip or surface mining, generated
coal dust is diluted by outdoor air. However,
rock-drilling operations associated with sur-

face mining are associated with a greater risk
of developing silicosis. Recent data indicate
that approximately 200,000 workers are

employed in the coal mining industry in the
United States. The Mine Safety and Health
Administration (MSHA) respirable coal mine
dust PEL is 2 mg/m3, while NIOSH has
recently lowered its REL to 1 mg/m3 (35).
Although dust levels are below 2 mg/m3 in
most coal mines, MSHA has noted occasions
in which the PEL is exceeded. High dust lev-
els occur more often with long-wall mining
than with conventional mining.

Physical and Chemical
Properties of Coal
Although coal is mainly carbon, coal mine
dust contains hydrogen, oxygen, nitrogen,
trace metals, inorganic minerals, and crys-

talline silica. Trace metals can include boron,
cadmium, copper, nickel, iron, antimony,
lead, and zinc. Some of these trace elements
can be cytotoxic and carcinogenic in experi-
mental models. Common mineral and ele-
mental contaminants are kaolin, mica, pyrite,
titanium, calcite, sulfur, sodium, magnesium,
and silica. The rank of coal increases from
peat to lignite, sub-bituminous to bitumi-
nous, and anthracite. As rank increases, the
ratio of carbon to other chemicals and min-
eral contaminants increases. In general,
anthracite coal mining has been associated
with higher rates of pneumoconiosis than
that found in bituminous miners (36,37).
Anthracite coal mine dust contains more sur-

face free radicals than bituminous coal, which
may explain its higher cytotoxicity and patho-
genicity (38-40). In addition, anthracite has
a higher crystalline silica content than bitumi-
nous coal (41). However, experimental evi-
dence suggests that silica particles from
bituminous mines may be coated with clay,
rendering them less active (41). Respirable
coal mine dust has a relatively large surface
area due to its small aerodynamic size and
porous nature. Organic aromatic compounds
present in the coal atmosphere, such as ben-

zene, methylene, phenol, and phenanthrene,
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can be adsorbed onto the surface of coal mine
dust and may affect its biologic activity.

Human Pathologic Reactions to Coal
Mine Dust
Inhalation of coal mine dust can lead to the
development of several diseases including
CWP, bronchitis, emphysema, Caplan syn-
drome, and silicosis (42,43). Coal miners typ-
ically develop one of two forms of disease
patterns-simple CWP or complicated CWP.
With chronic exposure, the milder form of
CWP may become complicated CWP, with
enlargement and profusion of lesions in the
lung. Black lung is a legal term used to
include CWP, bronchitis, emphysema, and
silicosis when they are found in association
with employment history in coal mines.

Coal Workers' Pneumoconiosis
The first case report on CWP was by Gregory
(44) in 1831 in a British coal miner. Initially
coal dust was considered innocuous, and
CWP was thought to be a variant of silicosis
due to similarities in chest radiographs. This
hypothesis was disproved by Collins and
Gilchrist (45). They studied the pathologic
changes in the lungs of coal trimmers exposed
to coal that was free of silica and showed that
workers developed pneumoconiosis despite
low silica exposure. Gough et al. (46) and
Heppleston (47,48) confirmed these findings
and showed that the histologic pulmonary
lesions in coal trimmers were identical to
those found in underground coal miners.
CWP is now clinically and pathologically
distinguished from silicosis.

The spectrum of lung lesions in coal work-
ers is wide, and CWP is categorized according
to the severity of disease (42,43). Simple
CWP is characterized by the formation of
black coal dust macules centered around the
respiratory bronchioles, mostly in the upper

lobes of the lung. The macules range in size
from 1 to 6 mm in diameter and are irregular
in size. Microscopically, macules contain coal
dust-laden macrophages with a fine network
of reticulin and some collagen fibers (Figure
3). Focal emphysema is a characteristic feature
associated with these macules (43). These
small coal dust- or carbonaceous material-
laden pulmonary lesions have not been associ-
ated with pulmonary symptoms.

Increased exposure to coal mine dust
results in the development of nodular lesions
that are firm on palpation in contrast to non-
palpable macules. They are classified on the
basis of size as micronodules (< 7 mm diame-
ter) and macronodules, which range in diam-
eter from 8 mm to 2 cm (42). They develop
at the bifurcations of respiratory bronchioles
and are commonly seen against a background
of macules, mostly in the upper lungs.
Nodules contain heavily coal dust-laden
macrophages interlaced with collagen fibers
oriented in a haphazard manner and may
have round, irregular, or stellate borders
(Figure 4). The fibrotic stroma is composed
of mature and immature collagen and retic-
ulin. With chronic exposure to coal mine
dust, nodules may converge and coalesce to
produce lesions measuring larger than 2 cm
with a fibrous nature. At this stage, the
disease is called complicated CWP or PMF.

Progressive Massive Fibrosis
Progressive massive fibrosis is a generic term
common in many pneumoconioses, includ-
ing silicosis and CWP. In complicated CWP
or PMF, lung function is compromised due
to extensive fibrosis and emphysema.
Progression of simple CWP to the more
aggressive form ofPMF is thought to be asso-
ciated with severe cumulative dust exposure,
concentration of inorganic minerals and sil-
ica, impaired clearance, infections, and

immunologic factors (49-53). There is a
tendency for PMF to progress with or with-
out further exposure (49). Progression from
simple CWP to PMF has been related to
radiographic severity of disease, to coal mine
dust exposure level, and to total dust burden.

PMF lesions have a predilection to occur
in the upper lobes of the right lung. However,
in advanced cases, lesions are bilateral.
Microscopically, PMF lesions appear as coal
dust-laden irregular or round, well-demar-
cated fibrotic masses of collagen bundles and
haphazardly laid hyalinized collagen fibers
intertwined with reticulin (Figure 5). Lesions
may also appear as amorphous collagenization
or clusters of nodules. Necrosis is often associ-
ated with central cavitation, and cholesterol
crystals are usually present. Vascular degenera-
tive changes associated with bronchial and
pulmonary arteries and lymphatic vessels are
common in the lesions.

Rheumatoid Pneumoconiosis
(Caplan Syndrome)
In coal miners with circulating rheumatoid
factor, rheumatoid pneumoconiosis (Caplan
syndrome) can occur (54,55). It is reported to
be more common in Europe, particularly in
Welsh miners. There is no evidence that coal
mining predisposes workers to rheumatoid
arthritis; however, it is often associated with
severe categories of CWP (56). Macroscopi-
cally, the nodules are pale yellow and show
variable layers of concentric dark bands. The
central zone is eosinophilic, granular, and
necrotic, with fragments of nuclear material,
collagen, and elastin often associated with
cavitation and calcification. Microscopically,
the nodules are similar to rheumatoid nod-
ules, circumscribed, and range in size from
0.5 to 5 cm in diameter. The periphery of
the lesion is composed of concentrically
arranged collagen with lymphocyte, plasma

Figure 3. Typical coal macule in the walls of respiratory bronchioles, with focal
emphysema surrounding the macule.

Figure 4. Stellate-shape micronodules developing around respiratory bronchioles.
Greater collagen and fewer coal dust particles are distinguishable compared
to macules.
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cells, and macrophages containing coal dust.
Palisading fibroblasts and plasma cells are a
characteristic feature of these lesions; they are
rare in tuberculosis and other infectious
granulomata (43).

Silicosis in Coal Workers
Silicosis in coal miners is rarely an isolated
form of pneumoconiosis and is usually found
in conjunction with simple CWP. Micro-
scopically, silicotic nodules.appear with the
typical concentric laminations of mature col-
lagen surrounding a hyalinized and partially
necrotic or calcified center. The nodule is sur-
rounded by a pigmented zone often contain-
ing histiocytes in reticulin stroma (Figure 6).
Nodules are found more frequently in the
upper lung zones but are also found in sub-
pleural and peribronchiolar locations.
Polarized light microscopy may reveal numer-
ous weekly birefringent particles within the
nodules and highly birefringent particles in
the peripheral mantle. With chronic exposure
to silica, confluence and profusion of lesions
may occur, resulting in the development of
conglomerate silicosis or PMF.

Prevalence of silicosis in coal miners can
be reliably determined only in autopsy studies
because of the inability of chest radiography
to distinguish between silicosis and CWP.
Furthermore, eggshell calcification indicative
of silicosis in radiographs is often not associ-
ated with parenchymal silicosis in autopsy
studies. Pathologic evaluations of 4,115
autopsy cases from the National Coal
Workers' Autopsy Study from 1972 to 1996
have found 23% of coal miners with pul-
monary silicosis and 58% with lymph node
silicosis (57). Certain job categories such as
tunnel drilling, roof bolting, and transporta-
tion are associated with increased risk for
developing silicosis (58).

Relationship between Radiographic
Category and Morphology ofCWP

Radiographically, simple CWP is classified
according to the number, size, and shape of
small opacities, which are most prevalent in
the upper zones of both lungs. Multiple small
rounded opacities on the chest radiographs are
classified and categorized based on size (i.e., p,
q, or r), shape (i.e., s, t, u), and profusion (i.e.,
0, 1, 2, or 3) using standard reference films
developed by the ILO (59). In simple CWP,
radiographic opacities range in size from
0.001 to 1.0 cm, and in complicated CWP
they are greater than 1.0 cm in diameter.
Complicated CWP with opacities greater than
1.0 cm are defined in terms of their dimen-
sion as A (< 50 mm), B (50 mm plus but not
greater than right upper lung lobe), and C
(exceeding the size of right upper zone). In
general, there is good correlation between
pathologic grading of disease severity and X-
ray category; large opacities showed a better
correlation with pathologic PMF (59).
However, moderate-to-severe pathologic
abnormality has to be present before abnor-
mality can be detected radiographically with
certainty. In cases with a radiographic profu-
sion of 0/0, moderate numbers of macules and
miconodules were present in pathologic evalu-
ation (59). PMF may be confused in chest
radiography with carcinoma, tuberculosis, or
bacterial infectious lesions (59).

Respiratory Symptoms ofCWP
Coal miners with milder forms of simple CWP
usually have no symptoms. Nevertheless, in a
small proportion of coal miners' abnormal
pulmonary function tests, airflow obstruction
and changes in diffusing capacity were
observed with macules (pea-size small opaci-
ties) (60). A 9-year follow-up study of coal

miners with simple CWP (small rounded
opacities) showed only a small fall in gas
exchange (61). Such a small drop in gas
exchange would not be expected to compro-
mise arterial oxygen content even during mild
exercise (62). It was, however, shown that
lung mechanics are decreased in simple
CWP, leading to an increase in residual vol-
ume (63). Focal emphysema associated with
coal macules is thought to be involved in col-
lapse of small airways. In addition, a condi-
tion known as industrial bronchitis is
reported in coal miners with and without
radiographic evidence ofCWP (64).

In complicated CWP, premature death is
associated with pulmonary disability. Higher
grades of PMF are associated with severe air-
way obstruction, restrictive defects, abnor-
malities in ventilation and perfusion, reduced
diffusing capacity, and low arterial oxygen
pressure (65). These progressive changes
eventually lead to pulmonary hypertension
and cor pulmonale (65).

Lung Cancer in Coal Miners
Lung cancer in coal miners occurs less
frequently than in the general population
after adjustment for age and smoking
(66,67). Epidemiologic studies of British and
U.S. coal miners reported a lower risk of lung
cancer for miners compared to that in non-
miners, and there was no apparent influence
of mining tenure on the prevalence of lung
tumors. There were also no changes in the
histopathology of lung cancer cell types in
coal miners, a point of view critically evalu-
ated to assess the relationship of smoking
(68). The tumors were mostly squamous cell
(30%), adenocarcinoma (27%), and small
cell (26%), again showing no influence of
mining tenure on the frequency of these cell
types. From these histopathologic studies, it is

Figure 5. Progressive massive fibrosis lesion showing cavitation and distortion of the
bronchiole and blood vessels. Necrosis in the cavity contains coal dust and dust-
containing macrophages.

Figure 6. Silicotic lesion in a coal miner's lung showing characteristic features of sili-
cotic nodule, such as an amorphous center with concentrically arranged collagen
fibers. Note the nodule is surrounded by coal dust.
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evident that there are no apparent cellular
differences in lung cancer of coal miners who
smoke and the cigarette-smoking general
population (68).

In contrast to lung cancer, epidemiologic
studies have revealed a higher-than-normal
incidence of mortality from gastric cancer in
coal miners compared to that in nonminers
(69-71). A significant relationship between
cumulative dust exposure and increased mor-
tality from cancers of the digestive system was
also evident from these studies. It has been
suggested that nitrosation of ingested coal dust
in the acidic gastric environment could result
in the production of carcinogenic products,
which may lead to the higher incidence of gas-
tric cancer in coal miners (72). In support of
this hypothesis, it was shown that upon nitro-
sation of coal dust extracts they become muta-
genic and are able to induce neoplastic
transformation ofmammalian cells (72,73).

Mechanisms of Silica and Coal
Pathogenicity
Interstitial lung disease caused by exposure to
silica and/or coal dust is the consequence of
damage to lung cells and the resultant lung
scarring associated with activation of the
fibrotic process. The following mechanisms
have been proposed to characterize this cycle
ofdamage and scarring (9,10):
* Direct cytotoxicity: Chemical features of

silica or coal dust result in reaction with
lung cells, leading to peroxidation of
membrane lipids and damage to cell
membranes. Damaged cells may release
intracellular enzymes, which would cause
further tissue damage, leading to scarring
or destruction of alveolar septa.

* Activation of oxidant generation by alveo-
lar macrophages: Silica or coal dust stimu-
lates the generation of ROS from alveolar
macrophages, which overwhelms antioxi-
dant defenses of the lung and causes lipid
peroxidation and cell damage. Such dam-
age may lead to scarring or destruction of
alveolar septa.

* Stimulation of the secretion of inflamma-
tory cytokines and chemokines from
alveolar macrophages and/or alveolar
epithelial cells: These inflammatory medi-
ators act as chemoattractants to recruit
polymorphonuclear leukocytes (PMNs)
and macrophages from pulmonary capil-
laries to the air spaces. These cytokines
also activate pulmonary phagocytic gener-
ation of oxidant species, leading to tissue
damage and scarring.

* Stimulation of secretion of fibrogenic fac-
tors from alveolar macrophages and/or
alveolar epithelial cells: Release of fibro-
genic factors results in induction of fibro-
blast proliferation and/or the stimulation
of collagen synthesis, leading to fibrosis.

Direct Cytotoxicity
The ability of silica or coal dust to cause lipid
peroxidation and induce damage to cells or
lung tissue is summarized in Table 1. In vitro
and in vivo damage resulting from silica expo-
sure has generally been reported to be more
severe than with coal dust.

Christian and Nelson (78) have correlated
the cytotoxicity of coal dust with the nickel
content of the mine dust samples. Samples
from Pennsylvania coal mines had higher
nickel content and exhibited greater cytotoxi-
city than samples from Utah coal mines. This
cytotoxicity was related to the higher rates of
CWP in Pennsylvania mines than that
reported in Utah. Dalal et al. (39) have found
radicals on the fracture surfaces of freshly
ground anthracite coal and noted that
hemolytic activity of this coal dust decreased
as these surface radicals decayed.

Nash et al. (87) have suggested that SiOH
groups on the surface of crystalline silica are
capable of forming hydrogen bonds with
membrane components, resulting in mem-
brane injury and leakage. Polyvinylpyridine-
N-oxide is thought to detoxify silica by acting
as a proton acceptor and shielding the SiOH
groups on quartz. Nolan et al. (88) have pro-
posed that the negative surface charge of the
SiO- groups is critical to cytotoxicity. It is
possible that this negative charge allows silica
to interact with scavenger receptors on alveo-
lar macrophages (80,89). Indeed, neutraliza-
tion of the surface of quartz with aluminum
salts markedly reduces cytotoxicity (81).

The grinding of silica results in the gener-
ation of Si and SiO radicals on the fracture
planes (17,90). Upon contact of these surface
radicals with aqueous solution, hydroxyl radi-
cals are generated (1?). There appears to be a
direct relationship between the ability of silica
particles to generate hydroxyl radicals and the
potential to cause lipid peroxidation and
cytotoxicity in vitro (17,91). A similar rela-
tionship has been demonstrated in vivo as
well (18,86). Surface iron plays an important
role in augmenting silica-induced hydroxyl

radical production and cytotoxicity both in
vitro and in vivo (17,92).

Activation ofOxidant Species
Production by Alveolar Macrophages
The production of reactive species (superoxide,
hydrogen peroxide, nitric oxide) from alveolar
macrophages has been associated with cell
damage and disease (93). Indeed, a relation-
ship has been reported between the level of
oxidant production by pulmonary phagocytes
and lung damage and severity of pneumoco-
niosis (84,94). Silica- and/or coal dust-induced
oxidant production from alveolar macrophages
has been measured directly or by monitoring
chemiluminescence in cellular, animal, and
human exposure studies. The data are summa-
rized in Table 2. As with direct cytotoxicity,
silica appears to be a more potent stimulant of
oxidant production than coal dust.

Freshly fractured silica is a more potent
stimulant of oxidant species production by
alveolar macrophages than aged silica where
surface radicals had decayed. This greater
potency of fresh silica dust has been demon-
strated after both in vitro and inhalation expo-
sures of rat alveolar macrophages (86,99).
Similarly, extremely high levels of chemilumi-
nescence have been reported from a rock
driller who was exposed to fresh silica and was
diagnosed with acute siicosis (97).

Stimulation ofInflammatory
Cytokine Release
As discussed above, silica and, to a lesser
extent, coal dust can stimulate oxidant gener-
ation. Evidence indicates that oxidant stress
can activate the nuclear transcription factor
NF-icB (100). Data indicate that silica can
simulate NF-icB binding to DNA (101).
Such binding to various gene promoters can
result in mRNA production for a variety of
inflammatory cytokines. Recent evidence
indicates that silica-induced activation of
another transcription factor, activation pro-
tein-1, also may play an important role in the
regulation of inflammatory cytokines (102).

Table 1. Direct cytotoxicity of silica or coal mine dust.
Toxic reaction Silica Coal dust Reference
In vitro studies
Lipid peroxidation e- + (74,75)
Hemolysis ++ + (74-76)
LDH release from alveolar macrophages ++ + (76,77)
Inhibition of mammalian cell growth NR + (78)
Increased permeability of Tll monolayers ++ NR (79
Apoptosis ++ NR (80)

In vivo studies
Lipid peroxidation ++ NR (18)
Lavage enzyme levels ++ (81,82)
Lavage protein ++ + (83-85)
Lavage red blood cells ++ NR (18,86)
Lavage lactate dehydrogenase ++ NR (83,85)

Abbreviations and symbols: -, no significant response; +, significant response; ++, greater response than +; NR, response has not
been reported.
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Excessive and prolonged inflammation of
the lung has been associated with the develop-
ment of pulmonary disease. In studies of silica
exposure of rats, the recruitment of PMNs
from the pulmonary capillaries to the alveolar
airspaces is a hallmark of the initiation and
progression of silica-induced lung disease
(83,85,86,103). As with cytotoxic responses,
the degree of pulmonary inflammation is
related to the ability of the silica particles to
generate radicals, i.e., freshly fractured silica
exhibits more surface radicals and causes more
PMN recruitment than aged silica (18,86).
PMN recruitment has also been demonstrated
as a hallmark of acute silicosis in humans (97).
Exposure of animals to coal dust also results in
inflammation characterized as an increase in
the number of macrophages and PMNs in the
alveolar space (82,104). In general the magni-
tude of the inflammatory response to coal dust
exposure is smaller than that to silica (84) and
is less dominated by PMN recruitment (104).
An increased number of alveolar macrophages
have also been reported in coal miners, with
the number of lavagable macrophages increas-
ing with the severity ofCWP (105).

This recruitment of phagocytic cells into
the alveolar spaces is in response to the particle-
induced production of chemotactic cytokines
and chemokines by alveolar macrophages and
alveolar type II epithelial cells (106). A list of
inflammatory cytokines and chemokines pro-
duced in response to silica or coal dust exposure
is given in Table 3. Leukotriene B4, platelet-
activating factor (PAF), and interleukin (IL)-1
are chemotaxins for PMNs and in the case of
IL-1 lymphocytes as well (6). Tumor necrosis
factor alpha (TNF-a) may not be a direct
chemoattractant factor; however, it is a potent
stimulant of chemokines, such as macrophage
inflammatory protein (MIP-1 or MIP-2) and
cytokine-induced neutrophil chemoattractant
(118). Indeed, the importance ofTNF-a in the
inflammatory reaction to silica has been
emphasized by the fact that a) PMN recruit-
ment exhibits a direct, linear relationship to
TNF-a production in silica-exposed rats (119);
and b) treatment of silica-exposed rats with
anti-TNF-a dramatically attenuates PMN
recruitment (118).

Once PMNs are recruited into the alveo-
lar spaces, several inflammatory cytokines act

Table 2. Silica or coal dust-induced activation of oxidant release from alveolar macrophages.
Response Silica Coal dust Reference

In vitro studies
Superoxide anion ++ NR (95)
Hydrogen peroxide ++ NR (95)
Chemiluminescence ++ NR (95)

In vivo animal studies
Hydrogen peroxide ++ NR (95)
Chemiluminescence ++ + (82,86,95)
Nitric oxide ++ + (84,86,96)

Human studies-patients with silicosis or CWP
Superoxide anion ++ + (94,98)
Hydrogen peroxide ++ NR (98)
Chemiluminescence ++ + (96,97)
Nitric oxide + + (96)

Abbreviations and symbols: +, significant response; ++, greater response than +; NR, response has not been reported.

Table 3. Silica or coal dust-induced stimulation of cytokine and chemokine secretion from lung cells.

Response Silica Coal dust Reference

In vitro studies
Platelet-activating factor ++ + (107)
Leukotriene B4 ++ + (105)
Prostaglandin E2 NR + (109)
Thromboxane A2 NR + (109)
TNF-ca ++ + (108,110)
IIL-1 ++ + (111(
IL-6 NR + (11a)

In vivo animal studies
Leukotriene B4 + + (112,113)
Prostaglandin E2 + NR (112)
Thromboxane A2 NR + (113)
TNF-a ++ NR (114)
IL-1 + NR (114)
Macrophage inflammatory protein ++ NR (106)

Human studies-patients with silicosis or CWP
TNF-a NR + (115)
IL-1 NR + (115)
Monocyte chemoattractant peptide-1 NR + (115)
IL-6 NR + (117

Abbreviations and symbols: +, significant response; ++, greater response than +; NR, response has not been reported.

to stimulate oxidant production by these
phagocytes. This would increase the oxidant
burden in the lung, overwhelm antioxidant
defenses, and cause lung injury and scarring.
Indeed, activation of ROS production by
PMNs has been demonstrated in response to
PAF, TNF-a, and IL-1 (107,119).

Stimulation ofFibrogenic Factor
Release
A number of cytokines produced by alveolar
macrophages have regulatory effects on
fibroblast growth and/or collagen synthesis.
When the balance between fibrotic and anti-
fibrotic mediators shifts, pulmonary fibrosis
can develop. IL-1 (120), TNF-a (121),
platelet-derived growth factor (PDGF) (122),
fibronectin (123), alveolar macrophage-
derived growth factor (123), and type 1
insulinlike growth factor (124) have been
reported to increase fibroblast proliferation.
PDGF and fibronectin are competence fac-
tors, whereas alveolar macrophage-derived
growth factor is a progression factor for pro-
liferation of fibroblasts. IL-1 has also been
described as a direct stimulant of collagen
production (125). TNF-ct is not only a direct
proliferative agent for fibroblasts but also
stimulates the secretion of PDGF in vitro
(126). A critical role of TNF-a in pulmonary
fibrosis is demonstrated by the fact that anti-
TNF-ax significantly decreased silica-induced
pulmonary fibrosis in a mouse model (127).

In contrast, IL-6 exhibits antifibrotic activ-
ity (128). Prostaglandin E2 and transforming
growth factor beta (TGF-P) exhibit a depres-
sive effect on cell growth (122,124). However,
under certain conditions, TGF-P can stimu-
late collagen synthesis in vitro (129).

The effects of silica or coal dust exposure
on alveolar macrophage production of
cytokines that regulate fibrogenesis are listed in
Table 4. Although exposure has been reported
to stimulate both fibrogenic and antifibrogenic
factors, it appears the balance shifts toward
fibrotic stimuli. For example, TNF-a, type 1
insulinlike growth factor, and PDGF all
increase as simple CWP progresses to PMF.

Data Gaps and Unresolved
Issues in Silicosis
* Controversy over the relationship

between crystalline silica exposure and the
development of lung cancer still exists.
Further evidence from both experimental
animal studies and human investigations
is desirable.

* Why does silica induce lung tumors in rat
models but not in mice or hamsters? What
is the mechanistic reason for this difference?

* In rats, silica-induced lung tumors have
been associated with a particle overload. Is
silica overload a prerequisite for the neo-
plastic response in humans?
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Table 4. Silica or coal dust-induced stimulation of fibrogenic factor secretion from lung cells
Response Silica Coal dust Reference
In vitro studies
TNF- a ++ + (108,110)
IL-1 ++ + (111)
Prostaglandin E2 NR + (l09)
[L-6 NR + (110)

In vivo animal studies
TNF-a ++ NR (114)
IL-1 + NR (114)
Fibronectin + NR (114)
TGF-,B + NR (130)
Prostaglandin E2 + NR 112)
Human studies-patients with silicosis or CWP
TNF-a NR + (115)
IL-1 NR + (115)
Fibronectin + + (98)
Alveolar macrophage-derived growth factor + + (98)
Platelet-derived growth factor NR + (124)
Type insulinlike growth factor NR + (124)
TGF-P NR + ( 124)
[l-6 NR + (117)

Abbreviations and symbols: +, significant response; ++, greater response than +; NR, response has not been reported.

* Lung carcinomas in silica-exposed rats
tend to be mostly in peripheral airways
and adenocarcinomas/bronchoalveolar
carcinomas are the frequent cell types. Is
there a predilection in humans for similar
tumors?

* Dose-response relationships between
tumor incidence and exposure to crys-
talline silica is required in both animal
models and human studies.

* Is silicosis in the lymph nodes associated
with excess lung cancer? Does this impede
the clearance of other carcinogens from
the lung and provide an increased resi-
dence time? If so, what evidence is avail-
able to support DNA damage or increased
frequency of mutations?

* Is pulmonary fibrosis a prerequisite for
silica-induced lung cancer in humans?

* Is an oxidant burden (particle derived
and/or inflammation derived) an intrinsic
mechanism involved in triggering silica-
induced tumors?

* Is crystalline silica a direct-acting carcino-
gen or cocarcinogen? Is it an initiator or
promoter?

* Why do different strains of mice exhibit
different susceptibilities to silica-induced
fibrosis? What are the mechanistic differ-
ences involved?

* Since freshly fractured silica is more cyto-
toxic and inflammatory than aged silica,
does this necessitate a lower exposure
standard in occupations that generate
freshly fractured silica dust? How much
lower should the standard be?

* What is the toxicity of abrasive blasting
substitutes in relationship to silica? Do
safe substitutes exist?

* Can biomarkers be developed to identify
adverse reactions to silica before disease
becomes irreversible?

* Can silicosis be treated or its progression
inhibited?

Data Gaps and Unresolved
Issues in CWP
* Controversy over the relationship

between the extent of exposure to crys-
talline silica or silicates and the develop-
ment of lung lesions such as nodules or
PMF is unresolved.

* Is impaired clearance or dust overload a
requirement for the progression of simple
CWP to PMF?

* Is an oxidant burden (particle derived
and/or inflammation derived) an intrinsic
mechanism involved in the development
ofCWP?

* Why do coal miners have a lower than
normal risk of lung cancer? Does coal
dust inhibit the metabolic activation of
chemicals to carcinogens?

* What is the true incidence of lung cancer
in never-smoker coal miners? Is there a
dose response?
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